Home / TECHNOLOGY / Synthetic intelligence in scientific genetics

Synthetic intelligence in scientific genetics

Synthetic intelligence in scientific genetics

As a blogger, write about a few of the newest information on the earth, with a honest tone, report or rewrite the primary content material into a normal search engine optimisation article of about 1000 phrases. no title, primarily based on Synthetic intelligence in scientific genetics, select focus key phrase all through the article.:

  • Solomon BD, Chung WK. Synthetic intelligence and the impression on medical genetics. Am J Med Genet C Semin Med Genet. 2023;193:e32060.

  • Jenkins BD, Fischer CG, Polito CA, Maiese DR, Keehn AS, Lyon M, et al. The 2019 US medical genetics workforce: a concentrate on scientific genetics. Genet Med. 2021;23:1458–64.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abacan M, Alsubaie L, Barlow-Stewart Okay, Caanen B, Cordier C, Courtney E, et al. The worldwide state of the genetic counseling career. Eur J Hum Genet. 2019;27:183–97.

    PubMed 

    Google Scholar
     

  • Solomon BD, Nguyen AD, Bear KA, Wolfsberg TG. Medical genomic database. Proc Natl Acad Sci USA. 2013;110:9851–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzaludo N, Belmont JW, Gainullin VG, Taft RJ. Estimating the burden and financial impression of pediatric genetic illness. Genet Med. 2019;21:1781–9.

    PubMed 

    Google Scholar
     

  • Kingsmore SF, Cakici JA, Clark MM, Gaughran M, Feddock M, Batalov S, et al. A randomized, managed trial of the analytic and diagnostic efficiency of singleton and trio, fast genome and exome sequencing in Sick infants. Am J Hum Genet. 2019;105:719–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De La Vega FM, Chowdhury S, Moore B, Frise E, McCarthy J, Hernandez EJ, et al. Synthetic intelligence permits complete genome interpretation and nomination of candidate diagnoses for uncommon genetic illnesses. Genome Med. 2021;13:153.

    PubMed 

    Google Scholar
     

  • Hsieh TC, Bar-Haim A, Moosa S, Ehmke N, Gripp KW, Pantel JT, et al. GestaltMatcher facilitates uncommon illness matching utilizing facial phenotype descriptors. Nat Genet. 2022;54:349–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Omorodion J, Dowsett L, Clark RD, Fraser J, Abu-El-Haija A, Sturdy A, et al. Delayed analysis and racial bias in youngsters with genetic circumstances. Am J Med Genet A. 2022;188:1118–23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faye F, Crocione C, Anido de Pena R, Bellagambi S, Escati Penaloza L, Hunter A, et al. Time to analysis and determinants of diagnostic delays of individuals dwelling with a uncommon illness: outcomes of a Uncommon Barometer retrospective affected person survey. Eur J Hum Genet. 2024;32:1116–26.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tinker RJ, Fisher M, Gimeno AF, Gill Okay, Ivey C, Peterson JF, et al. Diagnostic delay in monogenic illness: A scoping evaluation. Genet Med. 2024;26:101074.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira CR. The burden of uncommon illnesses. Am J Med Genet A. 2019;179:885–92.

    PubMed 

    Google Scholar
     

  • Bamshad MJ, Nickerson DA, Chong JX. Mendelian gene discovery: quick and livid for ever and ever. Am J Hum Genet. 2019;105:448–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solomon BD, Lee T, Nguyen AD, Wolfsberg TG. A 2.5-year snapshot of Mendelian discovery. Mol Genet Genom Med. 2016;4:392–4.


    Google Scholar
     

  • Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, et al. Proof for 28 genetic problems found by combining healthcare and analysis knowledge. Nature. 2020;586:757–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A normal framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng J, Novati G, Pan J, Bycroft C, Zemgulyte A, Applebaum T, et al. Correct proteome-wide missense variant impact prediction with AlphaMissense. Science. 2023;381:eadg7492.

    CAS 
    PubMed 

    Google Scholar
     

  • Ledgister Hanchard SE, Dwyer MC, Liu S, Hu P, Tekendo-Ngongang C, Waikel RL, et al. Scoping evaluation and classification of deep studying in medical genetics. Genet Med. 2022;24:1593–603.

    CAS 
    PubMed 

    Google Scholar
     

  • Biesecker LG, Adam MP, Alkuraya FS, Amemiya AR, Bamshad MJ, Beck AE, et al. A dyadic strategy to the delineation of diagnostic entities in scientific genomics. Am J Hum Genet. 2021;108:8–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKusick VA. On lumpers and splitters, or the nosology of genetic illness. Perspect Biol Med. 1969;12:298–312.

    CAS 
    PubMed 

    Google Scholar
     

  • Malechka VV, Duong D, Bordonada KD, Turriff A, Blain D, Murphy E, et al. Investigating determinants and evaluating deep studying coaching approaches for visible acuity in foveal hypoplasia. Ophthalmol Sci. 2023;3:100225.

    PubMed 

    Google Scholar
     

  • Duong D, Waikel RL, Hu P, Tekendo-Ngongang C, Solomon BD. Neural community classifiers for pictures of genetic circumstances with cutaneous manifestations. HGG Adv. 2022;3:100053.

    PubMed 

    Google Scholar
     

  • Duong D, Hu P, Tekendo-Ngongang C, Hanchard SEL, Liu S, Solomon BD, et al. Neural networks for classification and picture technology of ageing in genetic syndromes. Entrance Genet. 2022;13:864092.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duong D, Johny AR, Ledgister Hanchard S, Fortney C, Flaharty Okay, Hellmann F, et al. Comparability of scientific geneticist and pc visible consideration in assessing genetic circumstances. PLoS Genet. 2024;20:e1011168.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turing AM. I.—Computing Equipment And Intelligence. Thoughts. 1950;LIX:433–60.


    Google Scholar
     

  • Barto AG, Dietterich TG. Reinforcement studying and its relationship to supervised studying. Handb Study Approx Dyn Program 2004;10:9780470544785.


    Google Scholar
     

  • Silver D, Schrittwieser J, Simonyan Okay, Antonoglou I, Huang A, Guez A, et al. Mastering the sport of Go with out human data. Nature. 2017;550:354–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Hsieh TC, Krawitz PM. Computational facial evaluation for uncommon Mendelian problems. Am J Med Genet C Semin Med Genet. 2023;193:e32061.

    PubMed 

    Google Scholar
     

  • Hsieh TC, Mensah MA, Pantel JT, Aguilar D, Bar O, Bayat A, et al. PEDIA: prioritization of exome knowledge by picture evaluation. Genet Med. 2019;21:2807–14.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esteva A, Chou Okay, Yeung S, Naik N, Madani A, Mottaghi A, et al. Deep learning-enabled medical pc imaginative and prescient. NPJ Digit Med. 2021;4:5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaswani A. Consideration is all you want. Adv Neural Inf Course of Syst. https://arxiv.org/abs/1706.03762 2017.

  • Patel T, Othman AA, Sumer O, Hellman F, Krawitz P, Andre E, et al. Approximating facial features results on diagnostic accuracy through generative AI in medical genetics. Bioinformatics. 2024;40:i110–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60:84–90.


    Google Scholar
     

  • Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic evaluation of deep studying algorithms for detection of lymph node metastases in ladies with breast most cancers. JAMA. 2017;318:2199–210.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajpurkar P, Irvin J, Zhu Okay, Yang B, Mehta H, Duan T, et al. CheXNet: radiologist-level pneumonia detection on chest x-rays with deep studying. arXiv. https://arxiv.org/abs/1711.05225 2017.

  • Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Growth and validation of a deep studying system for diabetic retinopathy and associated eye illnesses utilizing retinal pictures from multiethnic populations with diabetes. JAMA. 2017;318:2211–23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korot E, Pontikos N, Liu X, Wagner SK, Faes L, Huemer J, et al. Predicting intercourse from retinal fundus images utilizing automated deep studying. Sci Rep. 2021;11:10286.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitani A, Huang A, Venugopalan S, Corrado GS, Peng L, Webster DR, et al. Detection of anaemia from retinal fundus pictures through deep studying. Nat Biomed Eng. 2020;4:18–27.

    PubMed 

    Google Scholar
     

  • Solomon BD, Adam MP, Fong CT, Girisha KM, Corridor JG, Hurst ACE, et al. Views on the way forward for dysmorphology. Am J Med Genet A. 2023;191:659–71.

    PubMed 

    Google Scholar
     

  • Sumer O, Hellmann F, Hustinx A, Hsieh TC, Andre E, Krawitz P. Few-shot meta-learning for recognizing facial phenotypes of genetic problems. Stud Well being Technol Inf. 2023;302:932–6.


    Google Scholar
     

  • Rassmann S, Keller A, Skaf Okay, Hustinx A, Gausche R, Ibarra-Arrelano MA, et al. Deeplasia: deep studying for bone age evaluation validated on skeletal dysplasias. Pediatr Radio. 2024;54:82–95.


    Google Scholar
     

  • Nguyen Q, Woof W, Kabiri N, Sen S, Daich Varela M, Cabral De Guimaraes TA, et al. Can synthetic intelligence speed up the analysis of inherited retinal illnesses? Protocol for a data-only retrospective cohort examine (Eye2Gene). BMJ Open. 2023;13:e071043.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lesmann H, Hustinx A, Moosa S, Klinkhammer H, Marchi E, Caro P, et al. GestaltMatcher Database – A worldwide reference for facial phenotypic variability in uncommon human illnesses. medRxiv. https://www.medrxiv.org/content/10.1101/2023.06.06.23290887v4 2024.

  • McGrath SP, Kozel BA, Gracefo S, Sutherland N, Danford CJ, Walton N. A comparative analysis of ChatGPT 3.5 and ChatGPT 4 in responses to chose genetics questions. J Am Med Inf Assoc. 2024;31:2271–83.


    Google Scholar
     

  • Flaharty KA, Hu P, Hanchard SL, Ripper ME, Duong D, Waikel RL, et al. Evaluating giant language fashions on medical, lay language, and self-reported descriptions of genetic circumstances. Am J Hum Genet. 2024;111:1819–33.

  • Duong D, Solomon BD. Evaluation of large-language mannequin versus human efficiency for genetics questions. Eur J Hum Genet. 2023;32:466–8.

  • Younger CC, Enichen E, Rivera C, Auger CA, Grant N, Rao A, et al. Diagnostic accuracy of a customized giant language mannequin on uncommon pediatric illness case reviews. Am J Med Genet A. 2024:e63878.

  • Goh E, Gallo R, Hom J, Sturdy E, Weng Y, Kerman H, et al. Massive language mannequin affect on diagnostic reasoning: a randomized scientific trial. JAMA Netw Open. 2024;7:e2440969.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aradhya S, Nussbaum RL. Genetics in mainstream medication: Lastly inside grasp to affect healthcare globally. Mol Genet Genom Med. 2018;6:473–80.


    Google Scholar
     

  • Aradhya S, Facio FM, Metz H, Manders T, Colavin A, Kobayashi Y, et al. Purposes of synthetic intelligence in scientific laboratory genomics. Am J Med Genet C Semin Med Genet. 2023;193:e32057.

  • Jaganathan Okay, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from main sequence with deep studying. Cell. 2019;176:535–48.e24.

    CAS 
    PubMed 

    Google Scholar
     

  • Retterer Okay, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, et al. Medical utility of whole-exome sequencing throughout scientific indications. Genet Med. 2016;18:696–704.

    CAS 
    PubMed 

    Google Scholar
     

  • Jumper J, Evans R, Pritzel A, Inexperienced T, Figurnov M, Ronneberger O, et al. Extremely correct protein construction prediction with AlphaFold. Nature. 2021;596:583–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nazareth S, Hayward L, Simmons E, Snir M, Hatchell KE, Rojahn S, et al. Hereditary most cancers danger utilizing a genetic chatbot earlier than routine care visits. Obstet Gynecol. 2021;138:860–70.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snir M, Nazareth S, Simmons E, Hayward L, Ashcraft Okay, Bristow SL, et al. Democratizing genomics: Leveraging software program to make genetics an integral a part of routine care. Am J Med Genet C Semin Med Genet. 2021;187:14–27.

    PubMed 

    Google Scholar
     

  • Chung WK, Dasgupta S, Regier DS, Solomon BD. The scientific geneticist workforce: Neighborhood boards to deal with challenges and alternatives. Genet Med. 2024;26:101121.

    PubMed 

    Google Scholar
     

  • Jumper J, Hassabis D. The protein construction prediction revolution and its implications for medication: 2023 Albert Lasker Primary Medical Analysis Award. JAMA. 2023;330:1425–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Deutsch EW, Kok LW, Mudge JM, Ruiz-Orera J, Fierro-Monti I, Solar Z, et al. Excessive-quality peptide proof for annotating non-canonical open studying frames as human proteins. bioRxiv. 2024:2024.09.09.612016.

  • Nguyen E, Poli M, Durrant MG, Kang B, Katrekar D, Li DB, et al. Sequence modeling and design from molecular to genome scale with Evo. Science. 2024;386:eado9336.

    CAS 
    PubMed 

    Google Scholar
     

  • Ruffolo JA, Nayfach S, Gallagher J, Bhatnagar A, Beazer J, Hussain R, et al. Design of extremely purposeful genome editors by modeling the universe of CRISPR-Cas sequences. bioRxiv. 2024:2024.04.22.590591.

  • Bastarache L, Hughey JJ, Hebbring S, Marlo J, Zhao W, Ho WT, et al. Phenotype danger scores establish sufferers with unrecognized Mendelian illness patterns. Science. 2018;359:1233–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilczewski CM, Obasohan J, Paschall JE, Zhang S, Singh S, Maxwell GL, et al. Genotype first: Medical genomics analysis by way of a reverse phenotyping strategy. Am J Hum Genet. 2023;110:3–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attard CA, Carmany EP, Trepanier AM. Genetic counselor workflow examine: The instances are they a-changin’? J Genet Couns. 2019;28:130–40.

    PubMed 

    Google Scholar
     

  • Dragojlovic N, Borle Okay, Kopac N, Ellis U, Birch P, Adam S, et al. The composition and capability of the scientific genetics workforce in high-income nations: a scoping evaluation. Genet Med. 2020;22:1437–49.

    PubMed 

    Google Scholar
     

  • Ayers JW, Poliak A, Dredze M, Leas EC, Zhu Z, Kelley JB, et al. Evaluating doctor and synthetic intelligence chatbot responses to affected person questions posted to a public social media discussion board. JAMA Intern Med. 2023;183:589–96.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Decker H, Trang Okay, Ramirez J, Colley A, Pierce L, Coleman M, et al. Massive language model-based chatbot vs surgeon-generated knowledgeable consent documentation for widespread procedures. JAMA Netw Open. 2023;6:e2336997.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirza FN, Tang OY, Connolly ID, Abdulrazeq HA, Lim RK, Roye GD, et al. Utilizing ChatGPT to facilitate actually knowledgeable medical consent. NEJM AI. 2024;1:AIcs2300145.


    Google Scholar
     

  • McCoy LG, Manrai AK, Rodman A. Massive language fashions and the degradation of the medical file. N Engl J Med. 2024;391:1561–4.

    PubMed 

    Google Scholar
     

  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *